

## Clustering in Random Pattern-Avoiding Permutations

A *cluster* of length  $l$  in a permutation from  $S_n$  is a set of  $l$  consecutive numbers that appear in any order in  $l$  consecutive positions in the permutation. For  $n \geq l \geq 2$  and  $\tau \in S_l$ , let  $N_l^{(n)}(\sigma)$  denote the number of clusters of length  $l$  in  $\sigma$ , and let  $N_{l;\tau}^{(n)}(\sigma)$  denote the number of clusters of length  $l$  whose order is the pattern  $\tau$ . (For example,  $\sigma = 317564928 \in S_9$  has the cluster 7564 of length  $l = 4$  and pattern  $\tau = 4231$ .)

For  $\eta \in S_3$ , let  $S_n^{\text{av}(\eta)}$  denote the set of permutations in  $S_n$  that avoid the pattern  $\eta$ , and let  $E_n^{\text{av}(\eta)}$  denote the expectation with respect to the uniform probability measure on  $S_n^{\text{av}(\eta)}$ . We obtain explicit formulas for  $E_n^{\text{av}(\eta)} N_{l;\tau}^{(n)}$  and  $E_n^{\text{av}(\eta)} N_l^{(n)}$ . These exact formulas yield asymptotic formulas as  $n \rightarrow \infty$  with  $l$  fixed, and also with  $l = l_n \rightarrow \infty$ .

In particular, for fixed  $l$ , depending on  $\eta$  and  $\tau$ , the expectation  $E_n^{\text{av}(\eta)} N_{l;\tau}^{(n)}$  either grows linearly in  $n$  or is bounded and bounded away from zero. The expectation  $E_n^{\text{av}(\eta)} N_l^{(n)}$  always has linear growth in  $n$ , when  $l$  is fixed. For certain  $\eta \in S_3$ ,  $\lim_{n \rightarrow \infty} E_n^{\text{av}(\eta)} N_{l_n}^{(n)}$  is equal to infinity or zero depending on whether  $l_n$  is on an order less than  $n^{\frac{2}{3}}$  or greater than  $n^{\frac{2}{3}}$ , while for other  $\eta \in S_3$ , this dichotomy occurs depending on whether  $\lim_{n \rightarrow \infty} (l_n - \frac{\log n}{\log 4})$  is equal to  $-\infty$  or  $+\infty$ .

Analogous results are obtained for  $S_n^{\text{av}(\eta_1, \dots, \eta_r)}$ , the permutations in  $S_n$  simultaneously avoiding the patterns  $\{\eta_i\}_{i=1}^r$ , in the case that  $\{\eta_i\}_{i=1}^r$  are all *simple* permutations. A particular case of this, where we can calculate the asymptotic behavior explicitly, is the set of *separable* permutations, which corresponds to  $r = 2$ ,  $\eta_1 = 2413$ ,  $\eta_2 = 3142$ .